
State machines and strings

Bruce Merry

Finite state machine

● Conceptual machine that processes a string
of symbols

● Has only one piece of memory: the state
● Based on the current state and the next

symbol, we transition to a new state

a b

a a

b

Special states

● start state

● accept state

● matches hi|hello

h

i

e

l

l

o

Regular expressions

● Easy for some
expressions:

a(b*(ab)+d|c)

a b

a

b

a

d

 b

 c

Non-determinism

● What about

a(b*(ab)+b|a)

● A NFSM “guesses”
● To simulate, track all

possibilities
● Backreferences not

possible with FSM

a b

a

b

a

b

 b

 a

Knuth-Morris-Pratt

● String searching
● Like Boyer-Moore, is O(N+M) in worst case
● Unlike Boyer-Moore, is O(N+M) on average
● Processes the haystack one letter at a time
● Keeps track of how much of the needle is

matched at the current point
● State machine used to update the “how

much”

KMP state machine

a
b r a

c

 a

d
abr

a

KMP search

● matched = 0

● for each haystack letter X

– while matched!= 0 and X does not match
● matched = failure[matched]

– if X matches, matched++

Building the failure function

● Bootstrap by running KMP on itself:

● for each i:
– failure[i] = failure[i – 1]

– while needle[i] != needle[failure[i]]
● failure[i] = failure[failure[i]]

– if needle[i] == needle[failure[i]]
● failure[i]++

Multi-string search

● KMP uses a linear state machine with failure

transitions

● To search multiple strings, structure the FSM

as a trie and use failure transitions

● Not trivial to bootstrap: it needs to be done

breadth-first.

Multi-string search

 s

 h

 o

h

o

p

s t

 i

 t

 i

 s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

